Safety and Reliability Analysis of an Ammonia-Powered Fuel-Cell System

Author:

Trivyza Nikoletta L,Cheliotis MichailORCID,Boulougouris EvangelosORCID,Theotokatos GerasimosORCID

Abstract

Recently, the shipping industry has been under increasing pressure to improve its environmental impact with a target of a 50% reduction in greenhouse gas emissions by 2050, compared to the 2008 levels. For this reason, great attention has been placed on alternative zero-carbon fuels, specifically ammonia, which is considered a promising solution for shipping decarbonisation. In this respect, a novel ammonia-powered fuel-cell configuration is proposed as an energy-efficient power generation configuration with excellent environmental performance. However, there are safety and reliability concerns of the proposed ammonia-powered system that need to be addressed prior to its wider acceptance by the maritime community. Therefore, this is the first attempt to holistically examine the safety, operability, and reliability of an ammonia fuel-cell-powered ship, while considering the bunkering and fuel specifications. The proposed methodology includes the novel combination of a systematic preliminary hazard identification process with a functional and model-based approach for simulating the impact of various hazards. Furthermore, the critical faults and functional failures of the proposed system are identified and ranked according to their importance. This work can be beneficial for both shipowners and policymakers by introducing technical innovation and for supporting the future regulatory framework.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality

Reference98 articles.

1. Trends in Global CO2 and Total Greenhouse Gas Emissions;Olivier,2020

2. Review of Maritime Transport, Technical Report,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3