Analysis of Machine Learning Algorithms for Opinion Mining in Different Domains

Author:

Gamal DoniaORCID,Alfonse Marco,M. El-Horbaty El-Sayed,M. Salem Abdel-Badeeh

Abstract

Sentiment classification (SC) is a reference to the task of sentiment analysis (SA), which is a subfield of natural language processing (NLP) and is used to decide whether textual content implies a positive or negative review. This research focuses on the various machine learning (ML) algorithms which are utilized in the analyzation of sentiments and in the mining of reviews in different datasets. Overall, an SC task consists of two phases. The first phase deals with feature extraction (FE). Three different FE algorithms are applied in this research. The second phase covers the classification of the reviews by using various ML algorithms. These are Naïve Bayes (NB), Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Passive Aggressive (PA), Maximum Entropy (ME), Adaptive Boosting (AdaBoost), Multinomial NB (MNB), Bernoulli NB (BNB), Ridge Regression (RR) and Logistic Regression (LR). The performance of PA with a unigram is the best among other algorithms for all used datasets (IMDB, Cornell Movies, Amazon and Twitter) and provides values that range from 87% to 99.96% for all evaluation metrics.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fake news detection models using the largest social media ground-truth dataset (TruthSeeker);International Journal of Speech Technology;2024-06

2. Sentiment Analysis of Hotel Reviews using Deep Learning Approaches;2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream);2024-04-25

3. Understanding Consumer Perceptions About Smartwatches: Feature Extraction and Opinion Mining Using Supervised Learning Algorithm;Acta Informatica Pragensia;2024-04-15

4. Hyperparameter Optimization of Machine Learning Models Using Grid Search for Amazon Review Sentiment Analysis;Lecture Notes in Networks and Systems;2024

5. Evaluation and Analysis Data from Twitter Data By Using Hybrid CNN & LTSM;2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3