Abstract
As wind farms have great influences on power system stability, it is essential to develop an adaptive as well as robust equivalent model of it. In this paper, a detailed equivalent model of PMSG wind farm and initialization method is developed. The trajectory sensitivity of parameters is analyzed. Then, the key parameters are estimated using improved Genetic Learning Particle Swarm Optimization (GLPSO) hybrid algorithm with phasor measurement unit (PMU). The description and generalization capability, stability for parameter identification of the equivalent model under wake effects, and when some wind turbines are off-line or wind speed is unknown after an event are analyzed. The maximum differences between the values of estimated parameters and their real ones are less than 10% for the proportional magnification constant of DC voltage controller Kp2 and grid side current controller Kp3. The convergence rate and global optimization performance of the improved GLPSO hybrid algorithm is 0.5 times higher than the classical particle swarm optimization algorithm (PSO) and genetic algorithm (GA).
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献