Experimental and Numerical Study on Energy Piles with Phase Change Materials

Author:

Mousa M. M.ORCID,Bayomy A. M.,Saghir M. Z.ORCID

Abstract

Phase change materials (PCM) utilization in energy storage systems represents a point of interest and attraction for the researchers to reduce greenhouse gas emissions. PCM have been used widely on the interior or exterior walls of the building application to optimize the energy consumption during heating and cooling periods. Meanwhile, ground source heat pump (GSHP) gained its popularity because of the high coefficient of performance (COP) and low running cost of the system. However, GSHP system requires a stand-by heat pump during peak loads. This study will present a new concept of energy piles that used PCM in the form of enclosed tube containers. A lab-scaled foundation pile was developed to examine the performance of the present energy pile, where three layers of insulation replaced the underground soil to focus on the effect of PCM. The investigation was conducted experimentally and numerically on two identical piles with and without PCM. Moreover, a flow rate parametric study was conducted to study the effect of the working fluid flow rate on the amount of energy stored and released at each model. Finally, a comprehensive Computational fluid dynamic (CFD) model was developed and compared with the experimental results. There was a good agreement between the experimental measurements and the numerical predictions. The results revealed that the presence of PCM inside the piles increased not only the charging and discharging capacity but also the storage efficiency of the piles. It was found that PCM enhances the thermal response of the concrete during cooling and heating processes. Although increasing the flow rate increased charging and discharging capacity, the percentage of energy stored/released was insignificant compared to the flow rate increasing percentage.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3