Two-Stage Fuzzy Logic Inference Algorithm for Maximizing the Quality of Performance under the Operational Constraints of Power Grid in Electric Vehicle Parking Lots

Author:

Hussain ShahidORCID,Lee Ki-Beom,A. Ahmed MohamedORCID,Hayes BarryORCID,Kim Young-ChonORCID

Abstract

The widespread adoption of electric vehicles (EVs) has entailed the need for the parking lot operators to satisfy the charging and discharging requirements of all the EV owners during their parking duration. Meanwhile, the operational constraints of the power grids limit the amount of simultaneous charging and discharging of all EVs. This affects the EV owner’s quality of experience (QoE) and thereby reducing the quality of performance (QoP) for the parking lot operators. The QoE represents a certain percentage of the EV battery required for its next trip distance; whereas, the QoP refers to the ratio of EVs with satisfied QoE to the total number of EVs during the operational hours of the parking lot. This paper proposes a two-stage fuzzy logic inference based algorithm (TSFLIA) to schedule the charging and discharging operations of EVs in such a way that maximizes the QoP for the parking lot operators under the operational constraints of the power grid. The first stage fuzzy inference system (FIS) of TSFLIA is modeled based on the real-time arrival and departure probability density functions in order to calculate the aggregated charging and discharging energies of EVs according to their next trip distances. The second stage FIS evaluates several dynamic and uncertain input parameters from the electric grid and from EVs to distribute the aggregated energy among the EVs by controlling their charging and discharging operations through preference variables. The feasibility and effectiveness of the proposed algorithm are demonstrated through the IEEE 34-node distribution system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3