Abstract
In this study, an analysis is carried out to determine the optimal application of multiple renewable energy resources, namely wind and solar, to provide electricity requirements for green smart cities and environments. This was done to determine the potential of renewable energy to provide clean, economically viable energy for the case study of Zagazig, located at 30°34′ N 31°30′ E in the North East of Egypt. The relevant data surrounding the production of energy were collected, including the meteorological data from NASA, and specifications regarding renewable resources including solar panels, wind turbines, and storage batteries. Then a hybrid model was constructed consisting of Photovoltaics (PV) panels, wind turbines, a converter, and storage batteries. Once the model was constructed, meteorological data were added alongside average daily demand and cost of electricity per kWh. The optimal solution for Zagazig consisted of 181,000 kW of solar panels feeding directly into the grid. This system had the lowest Net Present Cost (NPC) of the simulations run of US$1,361,029,000 and a net reduction of 156,355 tonnes of CO2 per year.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference34 articles.
1. Renewables 2019 Global Status Reporthttps://wedocs.unep.org/bitstream/handle/20.500.11822/28496/REN2019.pdf?sequence=1&isAllowed=y
2. https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf
3. Solar and Wind Energy Will Supply More Than 50% of World Electricity by 2030;Sayigh,2020
4. Viability analysis of PV power plants in Egypt
5. PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献