Author:
Duan Yanqing,Zhou Aijuan,Yue Xiuping,Zhang Zhichun,Gao Yanjuan,Luo Yanhong
Abstract
Maximizing the internal carbon sources in raw wastewater was found to be an alternative option to alleviate the financial burden in external carbon sources (ECS) addition to the biological nutrient removal (BNR) process. Based on previous studies on particulate recovery via fine-sieving technologies, alkali pretreatment was used to improve the short-chain fatty acid (SCFA) production from the fine-sieving fractions (FSF). Hydrolysis performance and methane production were monitored to evaluate the reasons for the SCFA boost. Besides, the microbial community structure was evaluated by high-throughput sequencing. Furthermore, mass balance and financial benefits were preliminarily estimated. The results showed that alkali pretreatment effectively promoted the generation of SCFAs with 234 mg/g volatile suspended solids (VSS), almost double that of the control test. This was partially attributed to the efficient hydrolysis, with soluble polysaccharides and protein increased by 2.1 and 1.2 times compared to that of the control, respectively. Inhibition of methanogens was also devoted to the accumulation of SCFAs, with no methane production until 150 h at high pH value. Finally, a preliminary evaluation revealed that 44.51 kg/d SCFAs could be supplied as the electron donor for denitrification, significantly reducing the cost in ECS addition for most wastewater treatment plants (WWTPs) with carbon insufficiency.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)