Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells

Author:

Holliman Peter J.ORCID,Mohsen Moneer,Connell Arthur,Kershaw Christopher P.ORCID,Meza-Rojas Diana,Jones Eurig W.ORCID,Geatches DawnORCID,Sen KakaliORCID,Hsiao Ya-Wen

Abstract

Most organic dyes synthesized for dye-sensitized solar cells (DSC) use a single linker group to bind to the metal oxide photo-anode. Here we describe the synthesis and testing of two new triphenylamine dyes containing either two carboxylic acids 5-[2-(4-diphenylamino-phenyl)-vinyl]-isophthalic acid (10) or two cyanoacrylic acids (2Z, 2′Z)-3, 3′-(5-((E)-4-(diphenylamino) styryl)-1, 3-phenylene) bis (2-cyanoacrylic acid) (8) as linker groups. Full characterization data are reported for these dyes and their synthetic intermediates. DSC devices have been prepared from these new dyes either by passive or fast dyeing and the dyes have also been tested in co-sensitized DSC devices leading to a PCE (η = 5.4%) for the double cyanoacrylate linker dye (8) co-sensitized with D149. The dye:TiO2 surface interactions and dye excitations are interpreted using three modelling methods: density functional theory (at 0 K); molecular dynamics (at 298 K); time dependent density functional theory. The modelling results show the preferred orientation of both dyes on an anatase (1 0 1) TiO2 surface to be horizontal, and both the simulated and experimental absorption spectra of the dye molecules indicate a red shifted band for (8) compared to (10). This is in line with broader light harvesting and Jsc for (8) compared to (10).

Funder

Engineering and Physical Sciences Research Council

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3