Achieving Robust Compressive Sensing Seismic Acquisition with a Two-Step Sampling Approach

Author:

Titova Anna1ORCID,Wakin Michael B.2ORCID,Tura Ali C.1ORCID

Affiliation:

1. Department of Geophysics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA

2. Electrical Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA

Abstract

The compressive sensing (CS) framework offers a cost-effective alternative to dense alias-free sampling. Designing seismic layouts based on the CS technique imposes the use of specific sampling patterns in addition to the logistical and geophysical requirements. We propose a two-step design process for generating CS-based schemes suitable for seismic applications. During the first step, uniform random sampling is used to generate a random scheme, which is supported theoretically by the restricted isometry property. Following that, designated samples are added to the random scheme to control the maximum distance between adjacent sources (or receivers). The null space property theoretically justifies the additional samples of the second step. Our sampling method generates sampling patterns with a CS theoretical background, controlled distance between adjacent samples, and a flexible number of active and omitted samples. The robustness of two-step sampling schemes for reallocated samples is investigated and CS reconstruction tests are performed. In addition, using this approach, a CS-based 3D seismic survey is designed, and the distributions of traces in fold maps and rose diagrams are analyzed. It is shown that the two-step scheme is suitable for CS-based seismic surveys and field applications.

Funder

Reservoir Characterization Project (RCP) consortium at the Colorado School of Mines

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3