Computational Modelling on Gasification Processes of Municipal Solid Wastes Including Molten Slag

Author:

Soon Genevieve12ORCID,Zhang Hui1,Law Adrian Wing-Keung13ORCID,Yang Chun4ORCID

Affiliation:

1. Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore

2. Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore

3. School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

4. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

The formulation of the CFD-DEM model, CD-MELT, is established in this study to include three-phase non-isothermal processes with simultaneous combustion and melting for gasification simulations. To demonstrate the model capability, CD-MELT is used to assess the need for slag recycling for the non-isothermal melting of municipal solid wastes (MSW) in a prototype waste-to-energy research facility. The simulation encompasses the full fixed-bed slagging gasification process, including chemical reactions and melting of MSW and slag. In order to assess the need for slag recycling, comparisons are made for the two cases of with and without, in terms of the slag mass, liquid slag volume fraction, exit gas composition, and temperature distribution in the gasifier. The prediction results enable the tracking of liquid molten slag as it permeates through the solids-packed bed for the first time in the literature as far as we are aware, which is crucial to address design considerations such as distribution of bed temperature and optimal location for slag-tap holes at the bottom, as well as potential slag clogging within the porous media. The model also predicts an uneven and intermittent slag permeation through the packed bed without the recycling, and provides a plausible explanation for the operators’ experience of why slag recycling is important for process stability. Finally, the predicted slag outlet temperature using the proposed CFD approach also agrees well with the measurement data published in an earlier case study for the same facility.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3