Abstract
An imaging Fourier-transform spectrometer in the mid-infrared (1850–6667 cm−1) has been used to acquire transmittance spectra at a resolution of 1 cm−1 of three atmospheric pollutants with known column densities (Q): methane (258 ppm·m), nitrous oxide (107.5 ppm·m) and propane (215 ppm·m). Values of Q and T have been retrieved by fitting them with theoretical spectra generated with parameters from the HITRAN database, based on a radiometric model that takes into account gas absorption and emission, and the instrument lineshape function. A principal component analysis (PCA) of experimental data has found that two principal components are enough to reconstruct gas spectra with high fidelity. PCA-processed spectra have better signal-to-noise ratio without loss of spatial resolution, improving the uniformity of retrieval. PCA has been used also to speed up retrieval, by pre-calculating simulated spectra for a range of expected Q and T values, applying PCA to them and then comparing the principal components of experimental spectra with those of the simulated ones to find the gas Q and T values. A reduction in calculation time by a factor larger than one thousand is achieved with improved accuracy. Retrieval can be further simplified by obtaining T and Q as quadratic functions of the two first principal components.
Funder
European Metrology Programme for Innovation and Research
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献