Affiliation:
1. Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
2. School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
Abstract
Skiing technique and performance improvements are crucial for athletes and enthusiasts alike. This study presents SnowMotion, a digital human motion training assistance platform that addresses the key challenges of reliability, real-time analysis, usability, and cost in current motion monitoring techniques for skiing. SnowMotion utilizes wearable sensors fixed at five key positions on the skier’s body to achieve high-precision kinematic data monitoring. The monitored data are processed and analyzed in real time through the SnowMotion app, generating a panoramic digital human image and reproducing the skiing motion. Validation tests demonstrated high motion capture accuracy (cc > 0.95) and reliability compared to the Vicon system, with a mean error of 5.033 and a root-mean-square error of less than 12.50 for typical skiing movements. SnowMotion provides new ideas for technical advancement and training innovation in alpine skiing, enabling coaches and athletes to analyze movement details, identify deficiencies, and develop targeted training plans. The system is expected to contribute to popularization, training, and competition in alpine skiing, injecting new vitality into this challenging sport.
Funder
National Natural Science Foundation of China Key Project