Study on the Prediction Method of the Ultra-Low-Cycle Fatigue Damage of Steel

Author:

Tian Qin,Liao Yanhua,Xie Xu,Zhuge Hanqing

Abstract

Cyclic void growth model (CVGM) and continuum damage mechanics (CDM) model are suitable for predicting the damage of ultra-low-cycle fatigue (ULCF) theoretically. However, studies on the prediction of ultra-low-cycle fatigue (ULCF) damage is lacking. To determine which method is better, we used the two methods to predict the damage of ULCF. Firstly, uniaxial tensile and large strain cycle tests were performed on the base metal, weld metal and heat-affected zone and the material parameters were calibrated respectively. The uniaxial plastic strain threshold and toughness parameter of weld metal were minimum, and the dispersion was maximum. The finite element models of the base metal and weld specimens were established based on the calibrated parameters, and the ULCF damage was predicted. Compared with the CVGM model, the CDM model can predict the fatigue life and the relationships among the fatigue and fracture lives, the post-fracture path and the number of cycles to initial damage. The parameter calibration is simple. CDM is superior to CVGM in predicting the ULCF damage of steel and its weld joints.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3