Shape Optimization Design for a Centrifuge Structure with Multi Topological Configurations Based on the B-Spline FCM and GCMMA

Author:

Li Xinyao,He Liangli

Abstract

The geotechnical centrifuge applied in various geotechnical engineering fields provides physical data for investigating mechanisms of deformation and failure and for validating analytical and numerical methods by simulating and studying the geotechnical problems. The basket, as one of the important components used to place the inspection model of centrifugal test, is designed to withstand complex loads. This paper presents an optimization design method for the basket based on the weighted B-Spline Finite Cell Method (FCM) and the globally-convergent method of moving asymptotes (GCMMA). In order to obtain a superior design solution, four topological configurations, i.e., original single web, porous dual web, open deep groove dual web, and connected closed dual web, are investigated and optimized. The mass is selected as the optimization objective, while key shape parameters and stress are regarded as design variables and the constraint, respectively. By optimization, the final masses of the four configurations are reduced greatly compared with the initial configurations, where the greatest weight loss, in case 4, is 10.6%. This indicates that the weighted B-Spline FCM and GCMMA can be well applied for shape optimization of structure in engineering design. In contrast to the final single web adopted in the traditional basket design in case 1, the final configuration in case 4, i.e., connected closed dual web, has the least mass. The final mass is reduced by 133.38 kg when the centrifuge strength requirement is met. Therefore, the final configuration in case 4, where the maximum von-Mises stress is 398.72MPa and mass is 781.82 kg, is superior to the three other configurations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Design and research of a new kind balance adjusting system of centrifuge;Li;Int. J. Mech. Mechatron. Eng.,2012

2. Environmental Health and Safety and Risk Managementhttp://www.ehs.cornell.edu/lrs/centrifuge/centrifugeDamages.htm

3. Failure analysis and optimization design of a centrifuge rotor;Xuan;Eng. Fail. Anal.,2007

4. Failure investigation of a centrifuge duplex stainless steel basket

5. The state-of-the-art centrifuge modeling of geotechnical problems at HKUST;Charles;J. Zhejiang Univ. Sci.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3