Modified Structures for Hybrid Active Sound Quality Control System Disturbed by Gaussian Random Noise

Author:

Li Shanjun,Jin Guoyong,Li Xiaobo,Ye Tiangui

Abstract

A hybrid active sound quality control system, in which a hybrid feedforward and feedback structure is applied, can not only be used in cases where the line-spectrum noise is obtained easily with reference sensors, but it can also improve the comfortability of noise and eliminate unexpected Gaussian random noise. However, the traditional structure for a hybrid active sound quality control system, whereby a reference signal in the feedback control structure is synthesized by the output signals of the feedforward control filter, feedback control filter, and line-spectrum noise cancellation control filter, introduces couplings of the three control filters. To remove the coupling interactions of the feedforward and feedback control structures and to reduce the complexity of the control system, two modified structures with less computational complexity or a smaller increase in computation are investigated in this paper. The first one involves a simplified structure in which the reference signal in the feedback control structure is replaced by the summation of the residual error signal and the output signal of the line-spectrum noise cancellation control filter, and the second one is a modified structure which integrates the output signals of the feedback control filter and the line-spectrum noise cancellation control filter for the reference signal in the feedback control structure. Numerical simulations are carried out to show the performance of the modified structures. The results illustrate that the two modified structures have the ability to cancel Gaussian random noise and to reduce or enhance the amplitude of line-spectrum noise to promote sound quality. Moreover, a simplified structure with a new leaky filtered-x least mean square (FxLMS) algorithm is proposed to upgrade the noise reduction performance and elevate stability in the feedback control structure. The effectiveness of the proposed algorithm also is proven by the simulation results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3