Enhancing the Prediction Accuracy of Data-Driven Models for Monthly Streamflow in Urmia Lake Basin Based upon the Autoregressive Conditionally Heteroskedastic Time-Series Model

Author:

Attar Nasrin FathollahzadehORCID,Pham Quoc Bao,Nowbandegani Sajad Fani,Rezaie-Balf MohammadORCID,Fai Chow Ming,Ahmed Ali NajahORCID,Pipelzadeh Saeed,Dung Tran DucORCID,Nhi Pham Thi Thao,Khoi Dao Nguyen,El-Shafie AhmedORCID

Abstract

Hydrological modeling is one of the important subjects in managing water resources and the processes of predicting stochastic behavior. Developing Data-Driven Models (DDMs) to apply to hydrological modeling is a very complex issue because of the stochastic nature of the observed data, like seasonality, periodicities, anomalies, and lack of data. As streamflow is one of the most important components in the hydrological cycle, modeling and estimating streamflow is a crucial aspect. In this study, two models, namely, Optimally Pruned Extreme Learning Machine (OPELM) and Chi-Square Automatic Interaction Detector (CHAID) methods were used to model the deterministic parts of monthly streamflow equations, while Autoregressive Conditional Heteroskedasticity (ARCH) was used in modeling the stochastic parts of monthly streamflow equations. The state of art and innovation of this study is the integration of these models in order to create new hybrid models, ARCH-OPELM and ARCH-CHAID, and increasing the accuracy of models. The study draws on the monthly streamflow data of two different river stations, located in north-western Iran, including Dizaj and Tapik, which are on Nazluchai and Baranduzchai, gathered over 31 years from 1986 to 2016. To ascertain the conclusive accuracy, five evaluation metrics including Correlation Coefficient (R), Root Mean Square Error (RMSE), Nash–Sutcliffe Efficiency (NSE), Mean Absolute Error (MAE), the ratio of RMSE to the Standard Deviation (RSD), scatter plots, time-series plots, and Taylor diagrams were used. Standalone CHAID models have better results than OPELM methods considering sole models. In the case of hybrid models, ARCH-CHAID models in the validation stage performed better than ARCH-OPELM for Dizaj station (R = 0.96, RMSE = 1.289 m3/s, NSE = 0.92, MAE = 0.719 m3/s and RSD = 0.301) and for Tapik station (R = 0.94, RMSE = 2.662 m3/s, NSE = 0.86, MAE = 1.467 m3/s and RSD = 0.419). The results remarkably reveal that ARCH-CHAID models in both stations outperformed all other models. Finally, it is worth mentioning that the new hybrid “ARCH-DDM” models outperformed standalone models in predicting monthly streamflow.

Funder

Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3