A Novel Spectral–Spatial Classification Method for Hyperspectral Image at Superpixel Level

Author:

Xie FudingORCID,Lei Cunkuan,Jin Cui,An Na

Abstract

Although superpixel segmentation provides a powerful tool for hyperspectral image (HSI) classification, it is still a challenging problem to classify an HSI at superpixel level because of the characteristics of adaptive size and shape of superpixels. Furthermore, these characteristics of superpixels along with the appearance of noisy pixels makes it difficult to appropriately measure the similarity between two superpixels. Under the assumption that pixels within a superpixel belong to the same class with a high probability, this paper proposes a novel spectral–spatial HSI classification method at superpixel level (SSC-SL). Firstly, a simple linear iterative clustering (SLIC) algorithm is improved by introducing a new similarity and a ranking technique. The improved SLIC, specifically designed for HSI, can straightly segment HSI with arbitrary dimensionality into superpixels, without consulting principal component analysis beforehand. In addition, a superpixel-to-superpixel similarity is newly introduced. The defined similarity is independent of the shape of superpixel, and the influence of noisy pixels on the similarity is weakened. Finally, the classification task is accomplished by labeling each unlabeled superpixel according to the nearest labeled superpixel. In the proposed superpixel-level classification scheme, each superpixel is regarded as a sample. This obviously greatly reduces the data volume to be classified. The experimental results on three real hyperspectral datasets demonstrate the superiority of the proposed spectral–spatial classification method over several comparative state-of-the-art classification approaches, in terms of classification accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3