Author:
Tang Junjie,Feng Li,Zhang Chunwei,Sun Yuan,Wang Long,Zhou Yizhou,Fang Dawei,Liu Yan
Abstract
Ammonium perrhenate is widely used in alloy manufacturing, powder processing, the catalytic industry, and other fields. Recrystallization can improve the specific surface area of ammonium perrhenate, reduce its particle size, and improve its particle size distribution uniformity. Therefore, recrystallized ammonium perrhenate can obtain better application benefits in the above fields. Stirring is an important factor that affects the recrystallization of ammonium perrhenate, and this paper systematically analyzes the influence of the stirring paddle types and stirring intensities on ammonium perrhenate during the homogeneous recrystallization process, ultimately revealing the relationship between the growth rate of ammonium perrhenate and the stirring process. Particle image velocimetry physical simulation results showed that the flow field in the reactor was more evenly distributed when using the disc turbine impeller, and a relatively uniform velocity liquid flow area was formed in the whole reactor, while the low-velocity liquid flow area was smaller. Therefore, this information, combined with SEM test results, suggests that under the same recrystallization time and stirring intensity, the stirring effect of a disc turbine impeller is more suitable than a propelling propeller and an Intermig impeller for the recrystallization process of ammonium perrhenate. Moreover, the XRD patterns and SEM analysis showed that if the agglomeration in the systems was too strong or too weak, the growths of the (101) crystal plane and (112) crystal plane were restrained, which caused an attenuation in the growth rates along the crystallographic directions that were orthogonal to the crystal faces. Finally, the reduction experiments show that the recrystallization of ammonium perrhenate could improve the phase parameters of rhenium powders.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference22 articles.
1. Recent Development of Rhenium Technology;Li;China Molybdenum Ind.,2016
2. Discussion of World and China Rhenium Resource Demand in 2030;Yu;China Min. Mag.,2014
3. Resources, Application and Extraction Status of Rhenium;Li;Precious Met.,2014
4. Properties and applications of rhenium and its alloys;Noar;Ammtiac Q.,2010
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献