Abstract
Monolayer antimony (antimonene) has been reported for its excellent properties, such as tuneable band gap, stability in the air, and high mobility. However, growing high quality, especially large-area antimonene, remains challenging. In this study, we report the direct growth of antimonene on c-plane sapphire substrate while using molecular beam epitaxy (MBE). We explore the effect of growth temperature on antimonene formation and present a growth phase diagram of antimony. The effect of antimony sources (Sb2 or Sb4) and a competing mechanism between the two-dimensional (2D) and three-dimensional (3D) growth processes and the effects of adsorption and cracking of the source molecules are also discussed. This work offers a new method for growing antimonene and it provides ideas for promoting van der Waals epitaxy.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献