Author:
Khrennikov Andrei,Asano Masanari
Abstract
We present the quantum-like model of information processing by the brain’s neural networks. The model does not refer to genuine quantum processes in the brain. In this model, uncertainty generated by the action potential of a neuron is represented as quantum-like superposition of the basic mental states corresponding to a neural code. Neuron’s state space is described as complex Hilbert space (quantum information representation). The brain’s psychological functions perform self-measurements by extracting concrete answers to questions (solutions of problems) from quantum information states. This extraction is modeled in the framework of open quantum systems theory. In this way, it is possible to proceed without appealing to the state’s collapse. Dynamics of the state of psychological function F is described by the quantum master equation. Its stationary states represent classical statistical mixtures of possible outputs of F (decisions). This model can be used for justification of quantum-like modeling cognition and decision-making. The latter is supported by plenty of statistical data collected in cognitive psychology.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献