An Efficient Algorithm for Cardiac Arrhythmia Classification Using Ensemble of Depthwise Separable Convolutional Neural Networks

Author:

Ihsanto Eko,Ramli KalamullahORCID,Sudiana Dodi,Gunawan Teddy Surya

Abstract

Many algorithms have been developed for automated electrocardiogram (ECG) classification. Due to the non-stationary nature of the ECG signal, it is rather challenging to use traditional handcraft methods, such as time-based analysis of feature extraction and classification, to pave the way for machine learning implementation. This paper proposed a novel method, i.e., the ensemble of depthwise separable convolutional (DSC) neural networks for the classification of cardiac arrhythmia ECG beats. Using our proposed method, the four stages of ECG classification, i.e., QRS detection, preprocessing, feature extraction, and classification, were reduced to two steps only, i.e., QRS detection and classification. No preprocessing method was required while feature extraction was combined with classification. Moreover, to reduce the computational cost while maintaining its accuracy, several techniques were implemented, including All Convolutional Network (ACN), Batch Normalization (BN), and ensemble convolutional neural networks. The performance of the proposed ensemble CNNs were evaluated using the MIT-BIH arrythmia database. In the training phase, around 22% of the 110,057 beats data extracted from 48 records were utilized. Using only these 22% labeled training data, our proposed algorithm was able to classify the remaining 78% of the database into 16 classes. Furthermore, the sensitivity ( S n ), specificity ( S p ), and positive predictivity ( P p ), and accuracy ( A c c ) are 99.03%, 99.94%, 99.03%, and 99.88%, respectively. The proposed algorithm required around 180 μs, which is suitable for real time application. These results showed that our proposed method outperformed other state of the art methods.

Funder

Universitas Indonesia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3