From Modeling to Failure Prognosis of Permanent Magnet Synchronous Machine

Author:

Ginzarly RihamORCID,Hoblos Ghaleb,Moubayed Nazih

Abstract

Due to the accelerating pace of environmental concerns and fear of the depletion of conventional sources of energy, researchers are working on finding renewable energy sources of power for different axes of life. The transportation sector has intervened in this field and introduced hybrid electric vehicles. Many complaints have been mentioned concerning fault detection and identification in the vehicle to ensure its safety, reliability and availability. Diagnosis has not been able to overcome all these concerns, and research has shifted toward prognosis, where the manufacturing sector is urged to integrate fault prognosis in the vehicle’s electrical powertrain. In this article, prognosis of the vehicle’s electrical machine is treated using a hidden Markov model after modeling the electrical machine using the finite element method. Permanent magnet machines are preferable in this application. The modeling of the machine is a combination of the electromagnetic, thermal and vibration finite element models. The considered faults are demagnetization, turn-to-turn short circuit and eccentricity. A strategy for the calculation of the remaining useful life (RUL) is suggested when a turn-to-turn short circuit fault occurs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. World Energy 2016–2050: Annual Report. “Political Economist”http: //content.csbs.utah.edu/~{}mli/Economies%205430-6430/World%20Energy%202016-2050.pdf

2. Climate Analytics, Timetables for Zero Emissions and 2050 Emissions Reductions: State of the Science for the ADP Agreement;Rogelj,2015

3. Condition monitoring of bidirectional DC-DC converter for hybrid electric vehicles

4. Comparison and design of different electrical machine types regarding their applicability in hybrid electrical vehicles

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3