Author:
Dang L. Minh,Min Kyungbok,Lee Sujin,Han Dongil,Moon Hyeonjoon
Abstract
Image forgery is an active topic in digital image tampering that is performed by moving a region from one image into another image, combining two images to form one image, or retouching an image. Moreover, recent developments of generative adversarial networks (GANs) that are used to generate human facial images have made it more challenging for even humans to detect the tampered one. The spread of those images on the internet can cause severe ethical, moral, and legal issues if the manipulated images are misused. As a result, much research has been conducted to detect facial image manipulation based on applying machine learning algorithms on tampered face datasets in the last few years. This paper introduces a deep learning-based framework that can identify manipulated facial images and GAN-generated images. It is comprised of multiple convolutional layers, which can efficiently extract features using multi-level abstraction from tampered regions. In addition, a data-based approach, cost-sensitive learning-based approach (class weight), and ensemble-based approach (eXtreme Gradient Boosting) is applied to the proposed model to deal with the imbalanced data problem (IDP). The superiority of the proposed model that deals with an IDP is verified using a tampered face dataset and a GAN-generated face dataset under various scenarios. Experimental results proved that the proposed framework outperformed existing expert systems, which has been used for identifying manipulated facial images and GAN-generated images in terms of computational complexity, area under the curve (AUC), and robustness. As a result, the proposed framework inspires the development of research on image forgery identification and enables the potential to integrate these models into practical applications, which require tampered facial image detection.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献