Tampered and Computer-Generated Face Images Identification Based on Deep Learning

Author:

Dang L. Minh,Min Kyungbok,Lee Sujin,Han Dongil,Moon Hyeonjoon

Abstract

Image forgery is an active topic in digital image tampering that is performed by moving a region from one image into another image, combining two images to form one image, or retouching an image. Moreover, recent developments of generative adversarial networks (GANs) that are used to generate human facial images have made it more challenging for even humans to detect the tampered one. The spread of those images on the internet can cause severe ethical, moral, and legal issues if the manipulated images are misused. As a result, much research has been conducted to detect facial image manipulation based on applying machine learning algorithms on tampered face datasets in the last few years. This paper introduces a deep learning-based framework that can identify manipulated facial images and GAN-generated images. It is comprised of multiple convolutional layers, which can efficiently extract features using multi-level abstraction from tampered regions. In addition, a data-based approach, cost-sensitive learning-based approach (class weight), and ensemble-based approach (eXtreme Gradient Boosting) is applied to the proposed model to deal with the imbalanced data problem (IDP). The superiority of the proposed model that deals with an IDP is verified using a tampered face dataset and a GAN-generated face dataset under various scenarios. Experimental results proved that the proposed framework outperformed existing expert systems, which has been used for identifying manipulated facial images and GAN-generated images in terms of computational complexity, area under the curve (AUC), and robustness. As a result, the proposed framework inspires the development of research on image forgery identification and enables the potential to integrate these models into practical applications, which require tampered facial image detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3