Structure, Magnetic Property, Surface Morphology, and Surface Energy of Co40Fe40V10B10 Films on Si(100) Substrate

Author:

Ou Sin-Liang,Liu Wen-Jen,Chang Yung-Huang,Chen Yuan-TsungORCID,Wang Yu-Tang,Li Wei-Hsuan,Tseng Jiun-Yi,Wu Te-HoORCID,Chi Po-Wei,Chu Chun-LinORCID

Abstract

When B and V are added to CoFe material, the mechanical strength and spin tunneling polarization of a CoFe alloy can be improved and enhanced by the high tunneling magnetoresistance (TMR) ratio. Based on these reasons, it is worthwhile investigating Co40Fe40V10B10 films. In this work, X-ray diffraction (XRD) showed that Co40Fe40V10B10 thin films have some distinct phases including CoFe (110), CoFe (200), FeB (130), and V (110) diffracted peaks with the strongest diffracted peak for 30 nm. The lowest low-frequency alternate-current magnetic susceptibility (χac) was detected at 30 nm because the large grain distribution inducing that high coercivity (Hc) enhances the spin coupling strength and low χac. The external field (Hext) had difficulty rotating in the spin state, hence, the spin sensitivity was reduced and the χac value decreased due to increased surface roughness. The 20 mm thickness had the highest χac 1.96 × 10−2 value at 50 Hz of an optimal resonance frequency (fres). The surface energy increased from 34.2 mJ/mm2 to 51.5 mJ/mm2 for Co40Fe40V10B10 films. High surface energy had corresponding strong adhesive performance. According to the magnetic and surface energy results, the optimal thickness is 20 nm due as it had the highest χac and strong adhesion.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3