A Novel Viscosity-Temperature Model of Glass-Forming Liquids by Modifying the Eyring Viscosity Equation

Author:

Chen Chunyu,Zeng Huidan,Deng Yifan,Yan Jingtao,Jiang Yejia,Chen Guorong,Zu Qun,Sun Luyi

Abstract

Many models have been created and attempted to describe the temperature-dependent viscosity of glass-forming liquids, which is the foundational feature to lay out the mechanism of obtaining desired glass properties. Most viscosity models were generated along with several impact factors. The complex compositions of commercial glasses raise challenges to settle these parameters. Usually, this issue will lead to unsatisfactory predicted results when fitted to a real viscosity profile. In fact, the introduction of the reliable viscosity-temperature data to viscosity equations is an effective approach to obtain the accurate parameters. In this paper, the Eyring viscosity equation, which is widely adopted for molecular and polymer liquids, was applied in this case to calculate the viscosity of glass materials. On the basis of the linear variation of molar volume with temperature during glass cooling, a modified temperature-dependent Eyring viscosity equation was derived with a distinguished mathematical expression. By means of combining high-temperature viscosity data and the glass transition temperature (Tg), nonlinear regression analysis was employed to obtain the accurate parameters of the equation. In addition, we have demonstrated that the different regression methods exert a great effect on the final prediction results. The viscosity of a series of glasses across a wide temperature range was accurately predicted via the optimal regression method, which was further used to verify the reliability of the modified Eyring equation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3