Infrared and Visible Image Fusion with a Generative Adversarial Network and a Residual Network

Author:

Xu Dongdong,Wang YongchengORCID,Xu Shuyan,Zhu Kaiguang,Zhang NingORCID,Zhang XinORCID

Abstract

Infrared and visible image fusion can obtain combined images with salient hidden objectives and abundant visible details simultaneously. In this paper, we propose a novel method for infrared and visible image fusion with a deep learning framework based on a generative adversarial network (GAN) and a residual network (ResNet). The fusion is accomplished with an adversarial game and directed by the unique loss functions. The generator with residual blocks and skip connections can extract deep features of source image pairs and generate an elementary fused image with infrared thermal radiation information and visible texture information, and more details in visible images are added to the final images through the discriminator. It is unnecessary to design the activity level measurements and fusion rules manually, which are now implemented automatically. Also, there are no complicated multi-scale transforms in this method, so the computational cost and complexity can be reduced. Experiment results demonstrate that the proposed method eventually gets desirable images, achieving better performance in objective assessment and visual quality compared with nine representative infrared and visible image fusion methods.

Funder

China National Funds for Distinguished Young Scientists

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3