Abstract
The residue number system (RNS) is widely used for data processing. However, division in the RNS is a rather complicated arithmetic operation, since it requires expensive and complex operators at each iteration, which requires a lot of hardware and time. In this paper, we propose a new modular division algorithm based on the Chinese remainder theorem (CRT) with fractional numbers, which allows using only one shift operation by one digit and subtraction in each iteration of the RNS division. The proposed approach makes it possible to replace such expensive operations as reverse conversion based on CRT, mixed radix conversion, and base extension by subtraction. Besides, we optimized the operation of determining the most significant bit of divider with a single shift operation of the modular divider. The proposed enhancements make the algorithm simpler and faster in comparison with currently known algorithms. The experimental simulation using Kintex-7 showed that the proposed method is up to 7.6 times faster than the CRT-based approach and is up to 10.1 times faster than the mixed radix conversion approach.
Funder
Russian Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference26 articles.
1. Residue Number Systems: Theory and Implementation;Omondi,2007
2. Residue Arithmetic and Its Applications to Computer Technology;Szabo,1967
3. Research challenges in next-generation residue number system architectures
4. Residue Number Systems: Theory and Applications;Mohan,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献