Abstract
In order to enhance performance of robot systems in the manufacturing industry, it is essential to develop motion and task planning algorithms. Especially, it is important for the motion plan to be generated automatically in order to deal with various working environments. Although PRM (Probabilistic Roadmap) provides feasible paths when the starting and goal positions of a robot manipulator are given, the path might not be smooth enough, which can lead to inefficient performance of the robot system. This paper proposes a motion planning algorithm for robot manipulators using a twin delayed deep deterministic policy gradient (TD3) which is a reinforcement learning algorithm tailored to MDP with continuous action. Besides, hindsight experience replay (HER) is employed in the TD3 to enhance sample efficiency. Since path planning for a robot manipulator is an MDP (Markov Decision Process) with sparse reward and HER can deal with such a problem, this paper proposes a motion planning algorithm using TD3 with HER. The proposed algorithm is applied to 2-DOF and 3-DOF manipulators and it is shown that the designed paths are smoother and shorter than those designed by PRM.
Funder
Ministry of Trade, Industry and Energy
Korea Institute of Energy Technology Evaluation and Planning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference36 articles.
1. Robot Motion Planning and Control;Laumond,1998
2. Principles of Robot Motion: Theory, Algorithms, and Implementation;Choset,2005
3. Smooth Local-Path Planning for Autonomous Vehicles1
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献