Receding-Horizon Vision Guidance with Smooth Trajectory Blending in the Field of View of Mobile Robots

Author:

Wu XingORCID,Angeles Jorge,Zou Ting,Sun Chao,Sun Qi,Wang Longjun

Abstract

Applying computer vision to mobile robot navigation has been studied for over two decades. One of the most challenging problems for a vision-based mobile robot involves accurately and stably tracking a guide path in the robot limited field of view under high-speed manoeuvres. Pure pursuit controllers are a prevalent class of path tracking algorithms for mobile robots, while their performance is rather limited to relatively low speeds. In order to cope with the demands of high-speed manoeuvres, a multi-loop receding-horizon control framework, including path tracking, robot control, and drive control, is proposed in this paper. This is done within the vision guidance of differential-driving wheeled mobile robots (DWMRs). Lamé curves are used to synthesize a trajectory with G 2 -continuity in the field of view of the mobile robot for path tracking, from its current posture towards the guide path. The platform twist—point velocity and angular velocity—is calculated according to the curvature of the Lamé-curve trajectory, then transformed into actuated joint rates by means of the inverse-kinematics model; finally, the motor torques needed by the driving wheels are obtained based on the inverse-dynamics model. The whole multi-loop control process, initiated from Lamé-curve blending to computational torque control, is conducted iteratively by means of receding-horizon guidance to robustly drive the mobile robot manoeuvring close to the guide path. The results of numerical simulation show the effectiveness of our approach.

Funder

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3