Effects of Bionic Curves on Penetration Force under Difference Soils

Author:

Ma Yunhai,Wang Huixin,Zhuang Jian,Qi Hongyan,Yu Jiangtao

Abstract

Soil penetration is the most important process during soil tilling. To optimize the soil penetration process, six specimens were designed and fabricated based on the badger teeth outlines. Both experimental investigation and numerical analysis were conducted with three types of soil. Results showed the specimen C, B, and D got the lowest penetration force and reduced the force by 26.15%, 22.68%, and 25.86% compared with that of specimen A under soil 1, soil 2, and soil 3, respectively. Depth-force curve analysis showed that the bionic specimens can slow down the force increase rate by reducing the coefficient of the force-depth curve equations. The bionic specimens obtained a lower increase of internal friction angle and cohesion after penetration, indicating the soil strength after penetration was lower. Furthermore, the rise in soil surface was observed after the penetration, and the penetration with the bionic specimens got a higher rise. Simulation analysis showed that the mechanism for the force reduction was because the force direction was changed, which brought a better flowability and less strength for the soil. It concludes that the badger teeth outlines reduce the penetration force by changing the force directions and optimizing the soil properties. Based on research results, the optimal bionic curve for penetration in different types of soil was determined.

Funder

State Key Laboratory of Automotive Safety and Energy

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

National Key Research Program of China

China Scholarship Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3