Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition

Author:

Rouhafzay GhazalORCID,Cretu Ana-MariaORCID,Payeur PierreORCID

Abstract

Transfer of learning or leveraging a pre-trained network and fine-tuning it to perform new tasks has been successfully applied in a variety of machine intelligence fields, including computer vision, natural language processing and audio/speech recognition. Drawing inspiration from neuroscience research that suggests that both visual and tactile stimuli rouse similar neural networks in the human brain, in this work, we explore the idea of transferring learning from vision to touch in the context of 3D object recognition. In particular, deep convolutional neural networks (CNN) pre-trained on visual images are adapted and evaluated for the classification of tactile data sets. To do so, we ran experiments with five different pre-trained CNN architectures and on five different datasets acquired with different technologies of tactile sensors including BathTip, Gelsight, force-sensing resistor (FSR) array, a high-resolution virtual FSR sensor, and tactile sensors on the Barrett robotic hand. The results obtained confirm the transferability of learning from vision to touch to interpret 3D models. Due to its higher resolution, tactile data from optical tactile sensors was demonstrated to achieve higher classification rates based on visual features compared to other technologies relying on pressure measurements. Further analysis of the weight updates in the convolutional layer is performed to measure the similarity between visual and tactile features for each technology of tactile sensing. Comparing the weight updates in different convolutional layers suggests that by updating a few convolutional layers of a pre-trained CNN on visual data, it can be efficiently used to classify tactile data. Accordingly, we propose a hybrid architecture performing both visual and tactile 3D object recognition with a MobileNetV2 backbone. MobileNetV2 is chosen due to its smaller size and thus its capability to be implemented on mobile devices, such that the network can classify both visual and tactile data. An accuracy of 100% for visual and 77.63% for tactile data are achieved by the proposed architecture.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Pattern on Resolution of Tactile Image Sensor Based on Deep Learning;IEEE Sensors Journal;2024-04-01

2. Vision-Touch Fusion for Predicting Grasping Stability Using Self Attention and Past Visual Images;2023 IEEE International Conference on Development and Learning (ICDL);2023-11-09

3. Fusion of tactile and visual information in deep learning models for object recognition;Information Fusion;2023-04

4. Object Recognition for Humanoid Robots Using Full Hand Tactile Sensor;IEEE Access;2023

5. Robotic Dough Shaping;2022 22nd International Conference on Control, Automation and Systems (ICCAS);2022-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3