Impact of IoT System Imperfections and Passenger Errors on Cruise Ship Evacuation Delay

Author:

Ma Yuting12,Gelenbe Erol134ORCID,Liu Kezhong2ORCID

Affiliation:

1. Instytut Informatyki Teoretycznej i Stosowanej Polskiej Akademii Nauk, 44-100 Gliwice, Poland

2. School of Navigation, Wuhan University of Technology, Wuhan 430063, China

3. Université Côte d’Azur, CNRS, I3S, 06100 Nice, France

4. Department of Computer Engineering, Yaşar University, Bornova, 35500 Izmir, Turkey

Abstract

Cruise ships and other naval vessels include automated Internet of Things (IoT)-based evacuation systems for the passengers and crew to assist them in case of emergencies and accidents. The technical challenges of assisting passengers and crew to safety during emergencies include various aspects such as sensor failures, imperfections in the sound or display systems that are used to direct evacuees, the timely selection of optimum evacuation routes for the evacuees, as well as computation and communication delays that may occur in the IoT infrastructure due to intense activities during an emergency. In addition, during an emergency, the evacuees may be confused or in a panic, and may make mistakes in following the directions offered by the evacuation system. Therefore, the purpose of this work is to analyze the effect of two important aspects that can have an adverse effect on the passengers’ evacuation time, namely (a) the computer processing and communication delays, and (b) the errors that may be made by the evacuees in following instructions. The approach we take uses simulation with a representative existing cruise ship model, which dynamically computes the best exit paths for each passenger, with a deadline-driven Adaptive Navigation Strategy (ANS). Our simulation results reveal that delays in the evacuees’ reception of instructions can significantly increase the total time needed for passenger evacuation. In contrast, we observe that passenger behavior errors also affect the evacuation duration, but with less effect on the total time needed to evacuate passengers. These findings demonstrate the importance of the design of passenger evacuation systems in a way that takes into account all realistic features of the ship’s indoor evacuation environment, including the importance of having high-performance data processing and communication systems that will not result in congestion and communication delays.

Funder

Institute of Theoretical & Applied Informatics (IITIS-PAN), Polish Academy of Sciences

European Union’s Horizon Europe research and innovation programme

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3