Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images

Author:

Tang HailongORCID,Lu Shanlong,Ali Baig Muhammad Hasan,Li Mingyang,Fang Chun,Wang Yong

Abstract

Surface water is a highly dynamical object on the earth’s surface. At present, satellite remote sensing is the most effective way to accurately depict the temporal and spatial variation characteristics of surface water on a large scale. In this study, a region-adaptive random forest algorithm is designed on the Google Earth Engine (GEE) for automatic surface water mapping by using data from multi-sensors such as Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-1 SAR images as source data, and China as a case study region. The visual comparison of the mapping results with the original images under different landform areas shows that the extracted water body boundary is consistent with the water range in the image. The cross-validation with the JRC GSW validation samples shows a very high precision that the average producer’s accuracy and average user’s accuracy of water is 0.933 and 0.998, respectively. The average overall accuracy and average kappa is 0.966 and 0.931, respectively. The independent verification results of lakes with different areas also prove the high accuracy for our method, with a maximum average error of 3.299%. These results show that the method is an ideal way for large-scale surface water mapping with a high spatial–temporal resolution.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3