Numerical Modeling Design for the Hybrid Additive Manufacturing of Laser Directed Energy Deposition and Shot Peening Forming Fe–Cr–Ni–B–Si Alloy

Author:

Zhang Xiaoyu,Li Dichen,Zhu Weijun

Abstract

Hybrid additive manufacturing is of great significance to make up for the deficiency of the metal forming process; it has been one of the main trends of additive manufacturing in recent years. The hybrid process of laser directed energy deposition (laser DED) and shot peening is a new technology combining the principles of surface strengthening and additive manufacturing, whose difficulty is to reduce the interaction between the two processes. In this paper, a new model with a discrete phase and fluid–solid interaction method is established, and the location of the shot peening point in the hybrid process is optimized. The distributions of the temperature field and powder trajectory were researched and experiments were carried out with the optimized parameters to verify simulation results. It was found that the temperature field and the powder trajectory partly change, and the optimized injection point is located in the stress relaxation zone of the material. The densities and surface residual stresses of samples were improved, and the density increased by 8.83%. The surface stress changed from tensile stress to compressive stress, and the introduced compressive stress by shot peening was 2.26 times the tensile stress produced by laser directed energy deposition.

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. Metal Additive Manufacturing: A Review

2. Metal Additive Manufacturing;Tempelman,2014

3. Metal Additive Manufacturing: A Review of Mechanical Properties

4. Residual Stress in Metal Additive Manufacturing

5. Challenges in Metal Additive Manufacturing for Large-Scale Aerospace Applications;Taminger,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research and development status of in situ field assisted laser additive manufacturing: A review;Optics & Laser Technology;2025-02

2. Gas-particle-heat dynamic coupling simulation in directed energy deposition;International Journal of Mechanical Sciences;2024-08

3. Simulation of powder transportation in directed energy deposition;The International Journal of Advanced Manufacturing Technology;2024-06-08

4. Post-treatment technologies for high-speed additive manufacturing:Status, challenge and tendency;Journal of Materials Research and Technology;2024-05

5. Hybrid directed energy deposition process coupled with plastic deformation;Journal of Physics: Conference Series;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3