Abstract
Effect of microstructure on the crack initiation and early propagation mechanism in the very high cycle fatigue (VHCF) regime was studied in 316L stainless steel (316L SS) by atomic force microscope (AFM) and electron back scattered diffraction (EBSD). The results show that small fatigue cracks initiate from the slip band near the grain boundaries (GBs) or the twin boundaries (TBs). Early crack propagation along or cross the slip band is strongly influenced by the local microstructure such as grain size, orientation, and boundary. Besides, the gathered slip bands (SBs) are presented side by side with the damage grains of the run-out specimen. Finally, it is found that dislocations can either pass through the TBs, or be arrested at the TBs.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献