G-Optrode Bio-Interfaces for Non-Invasive Optical Cell Stimulation: Design and Evaluation

Author:

Moorthy Vijai M.ORCID,Varatharajan Parthasarathy,Rathnasami Joseph D.,Srivastava Viranjay M.ORCID

Abstract

Biocompatibility and potential efficacy in biological applications rely on the bio-interactions of graphene nanoparticles with biological tissues. Analyzing and modulating cellular and device-level activity requires non-invasive electrical stimulation of cells. To address these needs, G-optrodes, bio-interfaces based on graphene, have been developed. These devices use light to stimulate cells without modifying their genetic code. Optoelectronic capabilities, in particular the capacity to transform light energy into electrical energy, will be maintained throughout the procedures of neural stimulation. G-optrodes have also been studied as thin films on a range of substrates, and they have been designed to function at a very small scale. This study examines the impact of G-optrode-based substrate designs on the optical stimulation of pheochromocytoma (PC-12). Graphene electrodes, known as G-optrodes, are responsible for converting light into electrical pulses with stimulating effects. G-optrode bio-interfaces provide a stimulus that is independent of wavelength range but is sensitive to changes in illuminance. The authors have performed a comprehensive investigation based on the correct effects of the medication in vitro, employing substrate-based G-optrode biointerfaces. In substrate-based systems, the authors have proven that graphene is biocompatible. PC-12 cells were cultured on graphene for 7 days. Based on the findings, 20-nm and 50-nm thick G-optrodes are being studied for possible use in biological and artificial retinal applications. The findings of this study highlight the significance of biocompatibility in the selection and use of G-optrodes for biomedical purposes.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3