A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing

Author:

Pietro William J.ORCID,Mermut Ozzy

Abstract

A portable and sensitive time-resolved biosensor for capturing very low intensity light emission is a promising avenue to study plant delayed fluorescence. These weak emissions provide insight on plant health and can be useful in plant science as well as in the development of accurate feedback indicators for plant growth and yield in applications of agricultural crop cultivation. A field-based delayed fluorescence device is also desirable to enable monitoring of plant stress response to climate change. Among basic techniques for the detection of rapidly fluctuating low intensity light is photon counting. Despite its vast utility, photon counting techniques often relying on photomultiplier tube (PMT) technology, having restricted use in agricultural and environment measurements of plant stress outside of the laboratory setting, mainly due to the prohibitive cost of the equipment, high voltage nature, and the complexity of its operation. However, recent development of the new generation solid-state silicon photomultiplier (SiPM) single photon avalanche diode array has enabled the availability of high quantum efficiency, easy-to-operate, compact, photon counting systems which are not constrained to sophisticated laboratories, and are accessible owing to their low-cost. In this contribution, we have conceived, fabricated and validated a novel SiPM-based photon counting device with integrated plug-and-play excitation LED, all housed inside a miniaturized sample chamber to record weak delayed fluorescence lifetime response from plant leaves subjected to varying temperature condition and drought stress. Findings from our device show that delayed fluorescence reports on the inactivation to the plant’s photosystem II function in response to unfavorable acute environmental heat and cold shock stress as well as chronic water deprivation. Results from our proof-of-concept miniaturized prototype demonstrate a new, simple and effective photon counting instrument is achieved, one which can be deployed in-field to rapidly and minimally invasively assess plant physiological growth and health based on rapid, ultra-weak delayed fluorescence measurements directly from a plant leaf.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3