Abstract
Photodynamic therapy (PDT) is considered a promising noninvasive therapeutic strategy in biomedicine, especially by utilizing low-level laser therapy (LLLT) in visible and near-infrared spectra to trigger biological responses. The major challenge of PDT in applications is the complicated and time-consuming biological methodological measurements in identification of light formulas for different diseases. Here, we demonstrate a rapid and label-free identification method based on artificial intelligence (AI)-assisted terahertz imaging for efficient light formulas in LLLT of acute lung injury (ALI). The gray histogram of terahertz images is developed as the biophysical characteristics to identify the therapeutic effect. Label-free terahertz imaging is sequentially performed using rapid super-resolution imaging reconstruction and automatic identification algorithm based on a voting classifier. The results indicate that the therapeutic effect of LLLT with different light wavelengths and irradiation times for ALI can be identified using this method with a high accuracy of 91.22% in 33 s, which is more than 400 times faster than the biological methodology and more than 200 times faster than the scanning terahertz imaging technology. It may serve as a new tool for the development and application of PDT.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Open Fund of IPOC, BUPT
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献