Artificial Intelligence-Assisted Terahertz Imaging for Rapid and Label-Free Identification of Efficient Light Formula in Laser Therapy

Author:

Shi JiaORCID,Guo Zekang,Chen Hongli,Xiao Zhitao,Bai Hua,Li Xiuyan,Niu Pingjuan,Yao Jianquan

Abstract

Photodynamic therapy (PDT) is considered a promising noninvasive therapeutic strategy in biomedicine, especially by utilizing low-level laser therapy (LLLT) in visible and near-infrared spectra to trigger biological responses. The major challenge of PDT in applications is the complicated and time-consuming biological methodological measurements in identification of light formulas for different diseases. Here, we demonstrate a rapid and label-free identification method based on artificial intelligence (AI)-assisted terahertz imaging for efficient light formulas in LLLT of acute lung injury (ALI). The gray histogram of terahertz images is developed as the biophysical characteristics to identify the therapeutic effect. Label-free terahertz imaging is sequentially performed using rapid super-resolution imaging reconstruction and automatic identification algorithm based on a voting classifier. The results indicate that the therapeutic effect of LLLT with different light wavelengths and irradiation times for ALI can be identified using this method with a high accuracy of 91.22% in 33 s, which is more than 400 times faster than the biological methodology and more than 200 times faster than the scanning terahertz imaging technology. It may serve as a new tool for the development and application of PDT.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Open Fund of IPOC, BUPT

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3