Study on the Effect of Non-Symmetrical Current Distribution Controlled by Capacitor Placement in Radio-Frequency Coils for 7T MRI

Author:

Hernandez DanielORCID,Nam TaewooORCID,Jeong Yonghwa,Kim Donghyuk,Kim Kyoung-NamORCID

Abstract

In this paper, we present a study on the effects of varying the position of a single tuning capacitor in a circular loop coil as a mechanism to control and produce non-symmetric current distribution, such that could be used for magnetic resonance imaging (MRI) operating at ultra-high frequency (UHF). This study aims to demonstrate that the position of the tuning capacitor of a circular loop could improve the coupling between adjacent coils, used to optimize transmission field uniformity or intensity, improve signal-to-noise ratio (SNR) or specific absorption rate (SAR). A typical loop coil used in MRI consists of symmetrically distributed capacitors along the coil; this design is able to produce uniform current distributions inside the coil. However, in UHF conditions, the magnetic flux density (|B1+|) field produced by this setup may exhibit field distortion, requiring a method of controlling the field distribution and improving the field intensity of the circular loop coil. The control mechanism investigated in this study is based on the position of the tuning capacitor in the circular coil, the capacitor position was varied from 15° to 345°, in steps of 15°. We performed electromagnetic (EM) simulations, fabricated the coils, and performed MRI experiments at 7T, with each of the coils with capacitor position from 15° to 345° to determine the effects on field intensity, coupling between adjacent coils, SAR, and applications for field uniformity optimization. For the case of free space, a coil with capacitor position at 15° showed higher field intensity compared to the reference coil; while an improved decoupling was achieved when a coil had the capacitor placed at 180° and the other coil at 90°; in a similar matter, we discuss the results for SAR, field uniformity and an application with an array coil for the spinal cord.

Funder

Ministry of Education

Korea government

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3