Simplified Deep Reinforcement Learning Approach for Channel Prediction in Power Domain NOMA System

Author:

Gaballa Mohamed1ORCID,Abbod Maysam1ORCID

Affiliation:

1. Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK

Abstract

In this work, the impact of implementing Deep Reinforcement Learning (DRL) in predicting the channel parameters for user devices in a Power Domain Non-Orthogonal Multiple Access system (PD-NOMA) is investigated. In the channel prediction process, DRL based on deep Q networks (DQN) algorithm will be developed and incorporated into the NOMA system so that this developed DQN model can be employed to estimate the channel coefficients for each user device in NOMA system. The developed DQN scheme will be structured as a simplified approach to efficiently predict the channel parameters for each user in order to maximize the downlink sum rates for all users in the system. In order to approximate the channel parameters for each user device, this proposed DQN approach is first initialized using random channel statistics, and then the proposed DQN model will be dynamically updated based on the interaction with the environment. The predicted channel parameters will be utilized at the receiver side to recover the desired data. Furthermore, this work inspects how the channel estimation process based on the simplified DQN algorithm and the power allocation policy, can both be integrated for the purpose of multiuser detection in the examined NOMA system. Simulation results, based on several performance metrics, have demonstrated that the proposed simplified DQN algorithm can be a competitive algorithm for channel parameters estimation when compared to different benchmark schemes for channel estimation processes such as deep neural network (DNN) based long-short term memory (LSTM), RL based Q algorithm, and channel estimation scheme based on minimum mean square error (MMSE) procedure.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3