Revisit the Medieval Warm Period and Little Ice Age in Proxy Records from Zemu Glacier Sediments, Eastern Himalaya: Vegetation and Climate Reconstruction

Author:

Mehrotra Nivedita1,Basavaiah Nathani2,Shah Santosh K.1ORCID

Affiliation:

1. Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226007, India

2. Indian Institute of Geomagnetism, Navi Mumbai 410206, India

Abstract

The Late Holocene fossil pollen records from the Zemu glacier, located in Yabuk, North Sikkim, in the eastern Himalayas, effectively generated quantitative climate reconstructions based on the transfer function model. The transfer function model was developed by establishing a modern pollen–climate calibration set from the temperate alpine belt of North Sikkim. A redundancy analysis was carried out to detect the pattern of variation of climatic variables in the modern pollen datasets. The mean annual precipitation (MAP) and mean temperature of the warming month (MTWA) had the strongest influence on the composition of the modern pollen samples among the climatic variables considered in the analysis. Proxy data in the form of fossil pollen records were analyzed for reconstructing past climate based upon the relationships between modern pollen vegetation assemblages and climatic patterns. Transfer functions for MAP and MTWA were developed with the partial least squares (PLS) approach, and model performance was assessed using leave-one-out cross-validation. The validated model was used to reconstruct MAP and MTWA for the last 2992 cal years BP (1042 BC) in North Sikkim. The variability observed in the reconstructions was analyzed for past global climatic events. It was further compared with the available regional and hemispheric proxy-based climate reconstructions. The reconstructions captured comparable Medieval Warm Period (MWP) and Little Ice Age (LIA)-like events from the Zemu glacier region. The fossil pollen data and climate reconstructions were further compared with the mineral magnetism data of the subsurface sediment profile.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3