A Weighted Decision-Level Fusion Architecture for Ballistic Target Classification in Midcourse Phase

Author:

Wei NannanORCID,Zhang LiminORCID,Zhang Xinggan

Abstract

The recognition of warheads in the target cloud of the ballistic midcourse phase remains a challenging issue for missile defense systems. Considering factors such as the differing dimensions of the features between sensors and the different recognition credibility of each sensor, this paper proposes a weighted decision-level fusion architecture to take advantage of data from multiple radar sensors, and an online feature reliability evaluation method is also used to comprehensively generate sensor weight coefficients. The weighted decision-level fusion method can overcome the deficiency of a single sensor and enhance the recognition rate for warheads in the midcourse phase by considering the changes in the reliability of the sensor’s performance caused by the influence of the environment, location, and other factors during observation. Based on the simulation dataset, the experiment was carried out with multiple sensors and multiple bandwidths, and the results showed that the proposed model could work well with various classifiers involving traditional learning algorithms and ensemble learning algorithms.

Funder

National Nature Science Foundation Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

1. Sensor Fusion Architectures for Ballistic Missile Defense;Maurer;Johns Hopkins APL Tech. Dig.,2006

2. Probabilistic Framework for Characterizing Uncertainty in the Performance of Networked Battlefield Sensors;Wilson,2008

3. Handbook of Multisensor Data Fusion: Theory and Practice;Liggins,2017

4. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase

5. Data fusion for ballistic targets tracking using least squares

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3