Evaluation for Simultaneous Removal of Anionic and Cationic Dyes onto Maple Leaf-Derived Biochar Using Response Surface Methodology

Author:

Choi Yong-KeunORCID,Gurav Ranjit,Kim Hyung Joo,Yang Yung-Hun,Bhatia Shashi Kant

Abstract

Rapid development in the printing and dying industry produces large amounts of wastewater, and its discharge in the environment causes pollution. Keeping in view the carcinogenic and mutagenic properties of various dyes, it is important to treat dyed wastewater. Maple leaf biochars were produced at different pyrolysis temperatures, i.e., 350 °C, 550 °C, and 750 °C, characterized for physicochemical properties and used for the removal of cationic (methylene blue (MB)) and anionic dye (congo red (CR)). Response surface methodology (RSM) using three variables, i.e., pH (4, 7, and 10), pyrolysis temperature (350 °C, 550 °C, and 750 °C), and adsorption temperature (20 °C, 30 °C, and 40 °C), was designed to find the optimum condition for dyes removal. X-ray diffraction (XRD) analysis showed an increase in CaCO3 crystallinity and a decrease in MgCO3 crystallinity with the increase of pyrolysis temperature. RSM design results showed that maple biochar showed maximum adsorption capacity for cationic dye at higher pH (9–10) and for anionic dye at pH 4-6, respectively. Under the selected condition of pH 7 and an adsorption temperature of 30 °C, biochar MB550 was able to remove MB and CR by 68% and 74%, respectively, from dye mixtures. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses showed that MB550 was able to remove both dyes simultaneously from the aqueous mixtures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3