Automated Open Cotton Boll Detection for Yield Estimation Using Unmanned Aircraft Vehicle (UAV) Data

Author:

Yeom JunhoORCID,Jung Jinha,Chang Anjin,Maeda Murilo,Landivar Juan

Abstract

Unmanned aerial vehicle (UAV) images have great potential for various agricultural applications. In particular, UAV systems facilitate timely and precise data collection in agriculture fields at high spatial and temporal resolutions. In this study, we propose an automatic open cotton boll detection algorithm using ultra-fine spatial resolution UAV images. Seed points for a region growing algorithm were generated hierarchically with a random base for computation efficiency. Cotton boll candidates were determined based on the spatial features of each region growing segment. Spectral threshold values that automatically separate cotton bolls from other non-target objects were derived based on input images for adaptive application. Finally, a binary cotton boll classification was performed using the derived threshold values and other morphological filters to reduce noise from the results. The open cotton boll classification results were validated using reference data and the results showed an accuracy higher than 88% in various evaluation measures. Moreover, the UAV-extracted cotton boll area and actual crop yield had a strong positive correlation (0.8). The proposed method leverages UAV characteristics such as high spatial resolution and accessibility by applying automatic and unsupervised procedures using images from a single date. Additionally, this study verified the extraction of target regions of interest from UAV images for direct yield estimation. Cotton yield estimation models had R2 values between 0.63 and 0.65 and RMSE values between 0.47 kg and 0.66 kg per plot grid.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3