Author:
Ma Ziqiang,He Kang,Tan Xiao,Xu Jintao,Fang Weizhen,He Yu,Hong Yang
Abstract
Accurate precipitation data is crucial in many applications such as hydrology, meteorology, and ecology. Compared with ground observations, satellite-based precipitation estimates can provide much more spatial information to characterize precipitation. In this study, the satellite-based precipitation products of Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) and Tropical Rainfall Measurement Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) were firstly evaluated over the Tibetan Plateau (TP) in 2015 against ground observations at both annual and monthly scales. Secondly, random forest algorithm was used to obtain the annual downscaled results (~1 km) based on IMERG and TMPA data and the downscaled results were examined against rain gauge data. Thirdly, a disaggregation algorithm was used to obtain the monthly downscaled results based on those at annual scale. The results indicated that (1) IMERG performed better than TMPA at both annual and monthly scales; (2) IMERG had few anomalies while TMPA displayed significant numbers of outliers in central and western parts of the TP; (3) random forest was a promising algorithm in acquiring high resolution precipitation data with improved accuracy; (4) the downscaled results based on IMERG had better performances than those based on TMPA.
Funder
NSFC
China Postdoctoral Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献