Abstract
The interpretation of land use and land cover (LULC) is an important issue in the fields of high-resolution remote sensing (RS) image processing and land resource management. Fully training a new or existing convolutional neural network (CNN) architecture for LULC classification requires a large amount of remote sensing images. Thus, fine-tuning a pre-trained CNN for LULC detection is required. To improve the classification accuracy for high resolution remote sensing images, it is necessary to use another feature descriptor and to adopt a classifier for post-processing. A fully connected conditional random fields (FC-CRF), to use the fine-tuned CNN layers, spectral features, and fully connected pairwise potentials, is proposed for image classification of high-resolution remote sensing images. First, an existing CNN model is adopted, and the parameters of CNN are fine-tuned by training datasets. Then, the probabilities of image pixels belong to each class type are calculated. Second, we consider the spectral features and digital surface model (DSM) and combined with a support vector machine (SVM) classifier, the probabilities belong to each LULC class type are determined. Combined with the probabilities achieved by the fine-tuned CNN, new feature descriptors are built. Finally, FC-CRF are introduced to produce the classification results, whereas the unary potentials are achieved by the new feature descriptors and SVM classifier, and the pairwise potentials are achieved by the three-band RS imagery and DSM. Experimental results show that the proposed classification scheme achieves good performance when the total accuracy is about 85%.
Subject
General Earth and Planetary Sciences
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献