Hysteresis Analysis of Hole-Transport-Material-Free Monolithic Perovskite Solar Cells with Carbon Counter Electrode by Current Density–Voltage and Impedance Spectra Measurements

Author:

Shah Syed Afaq Ali,Sayyad Muhammad Hassan,Sun JinghuaORCID,Guo ZhongyiORCID

Abstract

Due to the tremendous increase in power conversion efficiency (PCE) of organic–inorganic perovskite solar cells (PSCs), this technology has attracted much attention. Despite being the fastest-growing photovoltaic technology to date, bottlenecks such as current density–voltage (J–V) hysteresis have significantly limited further development. Current density measurements performed with different sweep scan speeds exhibit hysteresis and the photovoltaic parameters extracted from the current density–voltage measurements for both scan directions become questionable. A current density–voltage measurement protocol needs to be established which can be used to achieve reproducible results and to compare devices made in different laboratories. In this work, we report a hysteresis analysis of a hole-transport-material-free (HTM-free) carbon-counter-electrode-based PSC conducted by current density–voltage and impedance spectra measurements. The effect of sweep scan direction and time delay was examined on the J–V characteristics of the device. The hysteresis was observed to be strongly sweep scan direction and time delay dependent and decreased as the delay increased. The J–V analysis conducted in the reverse sweep scan direction at a lower sweep time delay of 0.2 s revealed very large increases in the short circuit current density and the power conversion efficiency of 57.7% and 56.1%, respectively, compared with the values obtained during the forward scan under the same conditions. Impedance spectroscopy (IS) investigations were carried out and the effects of sweep scan speed, time delay, and frequency were analyzed. The hysteresis was observed to be strongly sweep scan direction, sweep time delay, and frequency dependent. The correlation between J–V and IS data is provided. The wealth of photovoltaic and impendence spectroscopic data reported in this work on the hysteresis study of the HTM-free PSC may help in establishing a current density–voltage measurement protocol, identifying components and interfaces causing the hysteresis, and modeling of PSCs, eventually benefiting device performance and long-term stability.

Funder

Higher Education Commision, Pakistan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3