Abstract
A cost-effective, scalable and versatile method of preparing nano-ink without hazardous chemical precursors is a prerequisite for widespread adoption of printed electronics. Precursor-free synthesis by spark discharge is promising for this purpose. The synthesis of platinum nanoparticles (PtNPs) using a spark discharge under Ar, N2, and air has been investigated to prepare highly conductive nano-ink. The size, chemical composition, and mass production rate of PtNPs significantly depended on the carrier gas. Pure metallic PtNPs with sizes of 5.5 ± 1.8 and 7.1 ± 2.4 nm were formed under Ar and N2, respectively. PtNPs with sizes of 18.2 ± 9.0 nm produced using air consisted of amorphous oxide PtO and metallic Pt. The mass production rates of PtNPs were 53 ± 6, 366 ± 59, and 490 ± 36 mg/h using a spark discharge under Ar, N2, and air, respectively. It was found that the energy dissipated in the spark gap is not a significant parameter that determines the mass production rate. Stable Pt nano-ink (25 wt.%) was prepared only on the basis of PtNPs synthesized under air. Narrow (about 30 μm) and conductive Pt lines were formed by the aerosol jet printing with prepared nano-ink. The resistivity of the Pt lines sintered at 750 °C was (1.2 ± 0.1)·10−7 Ω·m, which is about 1.1 times higher than that of bulk Pt.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
General Materials Science,General Chemical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献