Abstract
In this study, oxidative desulfurization (ODS) of modeled and real oil samples was investigated using manganese-dioxide-supported, magnetic-reduced graphene oxide nanocomposite (MnO2/MrGO) as a catalyst in the presence of an H2O2/HCOOH oxidation system. MnO2/MrGO composite was synthesized and characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The optimal conditions for maximum removal of dibenzothiophene (DBT) from modeled oil samples were found to be efficient at 40 °C temperature, 60 min reaction time, 0.08 g catalyst dose/10 mL, and 2 mL of H2O2/formic acid, under which MnO2/MrGO exhibited intense desulfurization activity of up to 80%. Under the same set of conditions, the removal of only 41% DBT was observed in the presence of graphene oxide (GO) as the catalyst, which clearly indicated the advantage of MrGO in the composite catalyst. Under optimized conditions, sulfur removal in real oil samples, including diesel oil, gasoline, and kerosene, was found to be 67.8%, 59.5%, and 51.9%, respectively. The present approach is credited to cost-effectiveness, environmental benignity, and ease of preparation, envisioning great prospects for desulfurization of fuel oils on a commercial level.
Subject
General Materials Science,General Chemical Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献