Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale Device Production

Author:

Abid ORCID,Sehrawat PoonamORCID,Julien Christian M.ORCID,Islam Saikh S.ORCID

Abstract

Growth of monolayer WS2 of domain size beyond few microns is a challenge even today; and it is still restricted to traditional exfoliation techniques, with no control over the dimension. Here, we present the synthesis of mono- to few layer WS2 film of centimeter2 size on graphene-oxide (GO) coated Si/SiO2 substrate using the chemical vapor deposition CVD technique. Although the individual size of WS2 crystallites is found smaller, the joining of grain boundaries due to sp2-bonded carbon nanostructures (~3–6 nm) in GO to reduced graphene-oxide (RGO) transformed film, facilitates the expansion of domain size in continuous fashion resulting in full coverage of the substrate. Another factor, equally important for expanding the domain boundary, is surface roughness of RGO film. This is confirmed by conducting WS2 growth on Si wafer marked with few scratches on polished surface. Interestingly, WS2 growth was observed in and around the rough surface irrespective of whether polished or unpolished. More the roughness is, better the yield in crystalline WS2 flakes. Raman mapping ascertains the uniform mono-to-few layer growth over the entire substrate, and it is reaffirmed by photoluminescence, AFM and HRTEM. This study may open up a new approach for growth of large area WS2 film for device application. We have also demonstrated the potential of the developed film for photodetector application, where the cycling response of the detector is highly repetitive with negligible drift.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3